
Runtime analysis of Java 
applications

OKTECH Profiler

István Soós
istvan.soos@oktech.hu



Agenda

At the end of the presentation, you will be aware of ...

... the importance of application profiling.

... various performance measurement techniques.

... the impact of profiling and accepting the limits.

... the actual status of OKTECH Profiler.

... planned features and developments.



Measuring... why?

"Memory is cheap..."
"A little bigger machine will manage the load"...
"Hosting is cheap..."
"Just a new machine in the cloud..."

Is it really that cheap?

There are direct costs (or savings) on the performance.

If there is competition, someone will benchmark to it.

The client's time is always expensive, don't make him wait.



Measuring... what?

You can always ask questions about the application:
How much percentage does the ... processing take?
Why is this page so slow for the users?
Do we have an infrastructural bottleneck here?
Are our synchronization routines perfect?
Where is the query that involves the most post-processing 
while reading the results from the database?
We do have a cache, is it used correctly?
...
What is happening ... just right now?



The Good, the Bad and the...



The Good, the Bad and the...

The Good programmer:
does produce code with no errors
does produce code with no bottlenecks
does not exists

The Bad programmer:
does produce code that has bad synchronization points
does produce code that consumes a lot of resources
does not care about these

The Profiler-aware programmer:
runs a profiler on the code
checks the bottlenecks and the most time-consuming parts
fixes the issues if possible



Profiling methods

Instrumentation
Manual    (coding, coding and coding...)
Compile-time    (pre-binary)
Binary translation    (post-compile)
Runtime instrumentation    (pre-run)
Runtime injection    (on-the-fly)

Sampling
Execution trace    (where are we now?)
Monitor values    (memory, cpu times...)

Hypervisor
"Virtualization" or "Simulator"    (step the clock)



Instrumentation

protected void someMethod() {
    long start = System.nanoTime();
    // ...
    long end = System.nanoTime();
    Trace.report("someMethod()", (end-start) );
}

protected void otherMethod() {
   Trace.reportStart("otherMethod");
   try {
      // ...
   } finally {
      Trace.reportEnd("otherMethod");
   }
}



Systematic error of instrumentation

public void a() { b(); }
public void b() { c(); }
public void c() { for (int i =0; i<100; i++) d(i); }
...

The systematic error:
measurement times are added to the executions
on multiple level, this accumulates
there is no way to eliminate all measurement time
will be repeatedly the same on each measurements
distorts on lower timing values impact the overall result 
more



Sampling

1. Do not specify what to measure, just give me one actual 
state

StackTraceElement[] Thread.getStackTrace()
2. Repeat this couple of times.
3. Explore the depth of mathematical statistics :)

Adjustable, typically smaller overhead, but

Natural uncertainty
Different kind of statistics



Sampling: the stack trace

com.sun.jndi.rmi.registry.RegistryContext.lookup(RegistryContext.java:101)
com.sun.jndi.toolkit.url.GenericURLContext.lookup(GenericURLContext.java:185)

javax.naming.InitialContext.lookup(InitialContext.java:392)

javax.management.remote.rmi.RMIConnector.findRMIServerJNDI(RMIConnector.java:1886)
javax.management.remote.rmi.RMIConnector.findRMIServer(RMIConnector.java:1856)
javax.management.remote.rmi.RMIConnector.connect(RMIConnector.java:257)
javax.management.remote.rmi.RMIConnector.connect(RMIConnector.java:338)
javax.management.remote.JMXConnectorFactory.connect(JMXConnectorFactory.java:248)

hu.oktech.profiler.runtime.remote.RemoteJmxRuntime.start(RemoteJmxRuntime.java:65)
hu.oktech.profiler.runtime.remote.RemoteJmxProfiler.main(RemoteJmxProfiler.java:42)



Further observer effects

JVM effects:
Running anything attached to a JVM will affect GC times, 
threads, IO stats, sometimes synchronization
Instrumentation will make HotSpot different (less optimized)

CPU effects:
Modern CPUs do advanced caching and parallel processing 
of instructions
Sometimes low-level instructions are not processed in the 
designated order



OKTECH Profiler summary

http://code.google.com/p/oktech-profiler/

Local Java-agent, remote JMX connections
Sampling profiler
Instrumentation profiler (1.1+)
Simple tree statistics

XML output (1.1+)

Planned features:
Monitoring, alerting
More statistics, more output formats
More precise instrumentation and sampling

Commercial support: http://oktech.hu/



Demo: remote JMX connection

java -jar hu.oktech.profiler-java-runtime-1.1-all.jar \
  remote.jmx.url=service:jmx:rmi:///jndi/rmi://localhost:8686/jmxrmi \
  remote.jmx.user=admin \
  remote.jmx.password=adminadmin

java -jar hu.oktech.profiler-java-runtime-1.1-all.jar \
  prop=remote.properties



Demo: local Java agent

java \
  -javaagent:hu.oktech.profiler-java-runtime-1.1-all.jar=prop=local.
properties \
  -cp ...  some.Main arg1 arg2

instrument=my.company.*!,org.apache.*,-org.apache.catalina.*

#instrument-methods=



Demo: checking the reports

java -jar hu.oktech.profiler-report-1.1-all.jar \
  input=tmp/profiler/2009-09-16-19-00-00.dump \

java -jar hu.oktech.profiler-report-1.1-all.jar \
  prop=report.properties



With OKTECH Profiler...

... we can see and measure:
Method-level performance characteristics (both)
Possible locking and synchronization bottlenecks (sampling)
Mostly acceptable method timings (instr.)

... we cannot see and measure:
Parameter-level timings (e.g. per-parameter times)
Large memory consumption areas

Unfortunately it doesn't answer the management's questions 
directly, but we will work on that one too :)



Q & A

At the end of the presentation, you are aware of ...

... the importance of application profiling.

... various performance measurement techniques.

... the impact of profiling and accepting the limits.

... the actual status of OKTECH Profiler.

... planned features and developments.


