InputLayout

The layout manager that handles columns; each column contains two subcolumns, one is the "prompt" and the other is the "input”. | wrote it long ago; feel

free to use it. Just add it to your favorite package.

First,

here's how to use it when you want only one column. Note that the getter methods return a JTextField. As you see, when you add components, the
order is very important. The odd components are the labels (prompts), and the even components are the input fields. Odd in this sense is the serial

number of the add call.

Well,

actually it's not that simple. When laying out the components, the manager queries the target component (the pane) for the subcomponents, and
uses the order they are provided. That's important only if you change the order of the subcomponents later. It might even cause the reordering of the

components on the already displayed pane.

Sample code of using the layout manager.

And the source code of the layout manager (and here you are the downloadable source code):

public JPanel createl nputPane() {
JPanel p = new JPanel (new | nput Layout());

p. add(new JLabel ("Total Maxi mum Running Tinme "));
p. add(get Maxi munRunti meFi el d());

p. add(new JLabel (" Maxi num Nunber OF Iterations "));
p.add(getlterationsField());

p. add(new JLabel (" Maxi num Running Tine Per Iteration "));

p.add(getlterationTimeField());

return p;

}

Source code

i nport java.awt.Conponent;

i mport java.awt. Contai ner;

i mport java.awt.D nension;
inport java.awt.l|nsets;

i mport java.awt.Layout Manager 2;

| **

The | ayout nmmnager that organizes the conponents into
colums. Each columm contains a pair of conponents; one
"pronpt" and one "input field". The pronpts within any
single colum has the same width (the width of the wi dest
| abel, if possible). Simlarly, the width of the input
fields is the same for all of the fields of that same
colum. The input fields are also aligned. The hei ght of
the conponents in the same row will be set to the height
of the tallest conponent.

<p>

If there's any extra space available, it'll be
partitioned anmong the input fields, by taking into
account the "weights" of the colums. By default, the
wei ghts are equal for all the colums, but upon
instantiation, it mght be changed.

<pP>

The nunber of columms m ght be determ ned upon
instantiation, and it's immutable, but it is possible to
set the weights at any tine.

<pP>

Wen cal cul ating the "needed" space, the preferred size
of the conponents will be used. In case not enough space
is available, the mninumsize of all the conponents wll
be used, then the extra avail abl e space upon the m ni num
will be partitioned among the input fields according to
the weights. The pronpts won't grow ever.

<pP>

If there isn't enough space to provide even when using

https://wiki.iotguru.cloud/download/attachments/31457468/InputLayout.java?version=2&modificationDate=1364501281987&api=v2

* the mninum sizes, then the input fields will shrink. In
* this case, the colums with nore weight will shrink |ess
* (broadly speaking, a colum with half the weight of the
* other shrinks twice as nuch). However, effort is taken so
* that no input field be shorter than the size needed by

* the capital letter "M to appear. |f the available space
* needed for any colum is even less, the |layout manager

* tries to shrink another colums with greater weights. If
* the width of the input fields of all columm reached this
* mni mum size, and the avail able space is even less, the
* | ayout manager shrinks the pronpts. Wen worst comes to
* worst, the pronpts will disappear sooner than the input

* fields.

* <pP>

* \Wen addi ng conponents to the container nanaged by the

* | nput Layout, the conponents added to the odd indices are
* the pronpts, and the ones added to the even indices are
* the input fields. The layout nmanager never checks the

* actual type of the conponents.

* <pP>

* The conponent serving as a "pronpt" should be the

* jmmedi ate previous one of the associated "input field" it
* serves. That is, the conponent index of the pronpt in the
* contai ner nust be one less than the conponent index of

* the associated input field.

* <pP>

* \When there are nore colums, the first pair of conponents
* is added to the first colum, the second pair of

* conponents is added to the second colum, and so on until
* all the colums are popul ated. |If nore conponents are

* still available, the next pair will be added to the

* second row of the first colum, and so on. |f the nunber
* of conponents is odd (that is, no input field is

* available for the last "pair"), then that space will be
* |eft enpty, but the correspondi ng pronpt won't be taken
* into account when the |ayout nmanager cal culates the width
* of the "pronpt" subcolumm of the correspondi ng col um.

* Rather, that single pronpt may grow and occupy the space
* which otherwi se woul d be occupied by its associated input
* field.

* <pP>

* |f both the pronmpt and the associated input field is

* invisible, it won't taken into account when cal cul ating

* the space they needed, but their place will be left enpty
* by default. Therefore, when they made visible, the order
* of the conponent pairs won't change. However, it is

* possible to switch on or off this feature. Wien it is

* switched off (no place holders are allowed for the

* invisible component pairs), then once the pair is made

* visible again, all of the conponent pairs following wll
* be shifted one columm (and consequently may appear in the
* next rowif were put into the last columm previously).

* <pP>

* As it is now, I|nputlLayout |ays out the conponents from

* left toright, and fromtop to bottom However, after

* calculating all the necessary information, a method with
* the sole purpose to size and position the conponents is
* called. This nethod gets the cal cul ated sizes as

* paraneters. Therefore, the offsprings of I|nputlLayout has
* to redefine this nmethod only if they want to change the
* order in which the conponents are positioned.

* @ut hor Istvan KETLER, Sink6 Tekla (ul59905)

**/
public class I|nputLayout inplenents Layout Manager2 {
private static enum | nput Layout Type {
PREFERRED, M NI MUM NAXI MUM
}

| **

* Nunber of columms (determined at instantiation). One

* colum actually nmeans two colums: the pronpt col um
* and the input fields colum.
**/
private final int nrOf Col ums;
/**
* The wei ghts of the col ums.
**/
private final int[] columWeights;
/**
* |s the place should be reserved for the invisible
* conponent s?
*-k/
private bool ean i sPl aceHol der Al |l owed = true;
/1 The required space
Di nensi on needed = nul | ;
/1 The "nmust-have" space
Di nensi on badl yNeeded = nul | ;
/**
* Allows or forbids the use of place holders in the
* place of the invisible conponent pairs.

*

* @aram al | ow

* True if the use of the place holders is
* al l oned, false otherw se.
**/

public void allowPl aceHol ders(final bool ean allow) {
i sPl aceHol der Al | owed = al | ow,
}
/**
* Creates a |ayout where the conponents are organized
* into one colum. Each columm contains a pair of
* conponents (the "pronpt" and the "input field"), and
* each colum has the sane (zero) weight.
**/
public I nputlLayout() {
this(1, null);
}
/**
* Creates a |ayout where the conponents are organized
* into the given nunber of columms, and each col uim has
* equal weight. Each colum contains a pair of
* conponents (the "pronpt" and the "input field").

* @aramcols

* The nunber of columms. It must be less

* than 100 (that is the strict limt),

* al though nore than a few might not have a
* reasonabl e vi sual appearance.

**/

public I nputlLayout(final int cols) {

this(cols, null);
}
/**
* Creates a |ayout where the conponents are organized
* into the given nunber of columms, and each col um has
* jts given weight. The weight infornation will be
* ignored if the total sumof the provided weights
* exceeds 100, or if any of the remmining colums with
* undefined wei ght would have 0 weight. (An exanple is
* if there are 4 colums, and the first two have the
* weights of 49 and 50). In this case equal weights
* will be used for each colum, as if no weight
* informati on woul d have been provided at all. Al so
* note that in cases when the nunmber of colums nakes
* it inpossible to partition the 100 equally (eg. in
* case of 3 columms), the last colum gets the extra
* weight so that the total sumw |l always be exactly
* 100. If the weight of each colum is explicitly
* given, but the total sumis less than 100, then the
* |last colum picks up all the renmmining weight units.

* @aramcols

* The nunber of columms. It must be less

* than 100 (that is the strict limt),

* al though nore than a few nmight not have a
* reasonabl e vi sual appearance.

* @aram wei ghts

* The array of the weights (given in

* percents). The total sum of the weights

* should be 100. It is allowed to provide an
* array which has |l ess or nore nunber of

* el enents than the nunmber of colums. In

* case of |ess colums, the undefined ones

* wi ||l share the renmining space equally. In
* case of nore elements, the unnecessary

* ones are ignored.

**/

public InputLayout(final int cols, final int[] weights) {
/1 Actually the max nunber of colums shoul d be nuch
Il 1ess.
assert (cols < 100) : "Too many col ums";
nr&f Col ums = col s;
col umWei ghts = new i nt[nrCf Col ums] ;
/1 if no weights are specified
if (weights == null) {
set Equal Wi ght s(0) ;
/] otherwise, initialize the weight information

} else {
int total = 0;
/] Calculate the total sumof weights - it
/1 should be <= 100
for (int i =0; i < columWights.length; i++) {

/] Oops, nore weights than col ums!
if (i >= weights.length) {
set Equal Wei ght s(i);

br eak;
}
total += (columWeights[i] = weights[i]);
}
/1 More than 1009 How could it be? So ignore
/1 it!

if (total > 100) {
set Equal Wi ght s(0);
} else if (total < 100) {
/1 The last colum gets all of the remaining
/] space
col umWei ght s[col umWei ghts.length - 1] += 100 - total;

* Sets equal weights to the remaining colums. The

* method cal cul ates the weight of the columms not

* involved, and provides the remaining value in equal

* pieces to the remaining colums. The total sumof all
* the colum wei ghts should be 100.

* @aramcols
* The first colum which is involved.
**/
protected void set Equal Wei ght s(int cols) {
/1 This could never happen...
assert (cols < columWeights.length) : "The colum index is greater than the nunber
int len = col umWei ghts. | ength;
// Were it called fromthe constructor, this code
/1 has no use...
/1 1f only the first few col ums would have been
/] determ ned wei ght
int used = 0;
for (int i =0; i <cols; i++) {
used += columWeéi ghts[i];

of colums!";

/1 Not enough space for the remaining colums
if (used > (100 - (len - cols))) {
used = 0;
cols = 0;
}
/1 end of "has no use" code
int free = 100 - used;
int rentols = len - cols;
/'l The percents of the remaining colums
/] Be aware, w * rentols may or may not equal to
/'l free! (divide int)
int w= free / rentols;
for (int i =cols; i < (len - 1); i++) {
used += w;
col umWei ght s[i]

W,

}

/1 The last colum gets all of the remaining space
col umWei ghts[len - 1] = 100 - used;

* Calculates the mninmum preferred, or maxi mum sizes
* of the colums.

* @aramtarget

* The contai ner which size should be

* cal cul at ed.

* @ar am nConp

* The nunber of conponents added to the

* cont ai ner.

* @aram nr O Rows

* The nunber of rows the conponents wll be
* laid out.

* @aramtype

* The actual size should be used. The val ue
* m ght be MNITMUM MAXI MUM or PREFERRED.

* @eturns An array of arrays containing the sizes. The
* first two array gives the widths of the

* colums: the widths of the pronpt subcolum
* and the widths of the input field subcol um.
* The third array gives the heights of the

* rows.

**/

private int[][] cal cul ateDi nensions(final Container target, final int nConp, final int nrOf Rows, final
I nput Layout Type type) {

/1 The return array

int[][] retArray = newint[3][];

/1 By default, all of the elements of the arrays are

/1 initialized by 0.

/1 The width of the pronpts

int[] pronptWdths = new i nt[nrCf Col ums];

/1 The width of the input fields

int[] fieldWdths = new int[nrO Col ums];

/1 The heights of the rows

int[] heights = new int[nrCf Rows];

/Il Initialize the return array

ret Array[0] pronpt W dt hs;

retArray[1] = fiel dWdths;

retArray[2] = heights;

/1 The next conponent

Conmponent theConponent = null;

/1 Size of the pronpt

Di mension pdim= null;

/1 Size of the input field

Di nension fdim= null;

/1 The actual conponent

int current Conponent = 0;

/| For each row

for (int currentRow = 0; currentRow < nrOf Rows; current Rowt+) {
int height = 0;
/1 for each colum (However, the colum is
Il increased only if

/'l either the place holder is allowed, or one of

/1 the two
/1 components form ng the colum is visible)
for (int col = 0; col < nrOColums;) {

/'l checks which sub-colum exists (pronpt
/1 and input field)
int subcols = 0;
if (currentConmponent >= nConp) {
/1 no nore conponents are avail able
br eak;
}
/1 The next conponent
t heConponent = target.get Conponent (current Conponent ++) ;
/1 The conponent exists and is visible
if ((theConponent != null) && theConponent.isVisible()) {
/1 The pronpt is visible
subcols | = 1;
/1 pdimgets the selected size of the
/| conponent
switch (type) {
case M N MUM
pdi m = t heConponent . get M ni nunsi ze() ;
break;
case MAXI MUM
pdi m = t heConponent . get Maxi nunsi ze() ;
br eak;
defaul t:
case PREFERRED:
pdi m = t heConponent . get PreferredSi ze();
br eak;
}
}

/1 The very last input field may not exist
if (currentConmponent < nConp) {
t heConponent = target.get Conponent (current Conponent ++) ;
/'l The conponent exists and is visible
if ((theConponent != null) && theConponent.isVisible()) {
/1 The input field is visible
subcols | = 2;
/1 fdimgets the selected size of
/1 the conponent
switch (type) {
case M N MUM
fdi m= theConponent.getM ni nunsSi ze();
br eak;
case MAXI MUM
fdi m= theConponent. get Maxi nunSi ze() ;
br eak;
defaul t:
case PREFERRED:
fdi m= theConponent. get PreferredSi ze();
break;

}
}
/1 1f the place holder is allowed, of if one
/1 of the sub-colums is visible
if (isPlaceHol derAllowed || (subcols > 0)) {
/1 if only the label is visible, there's
/1 nothing to do.
// That is, no label is allowed to be
/1 longer than the wi dth
/1 of the sumof the pronpt and the
/1 input field colums
switch (subcols) {
case 3: {
/1 Finding the w dest pronpt in
/1 the colum
pronmpt Wdt hs[col] = Math. max(pronpt Wdths[col], pdimw dth);
/1 Finding the max height in
/'l this row

hei ght =

Mat h. max(hei ght,

pdi m hei ght) ;

/] continues with the next case

fdimw dth);

}
case 2: {
/1 Finding the wi dest input
// field in the colum
fieldWdths[col] = Math. max(fiel dWdths[col],
/1 Finding the max height in
/1 this row
hei ght = Mat h. max(hei ght, fdi mheight);
br eak;
}
}
/1 The colum nunber is increased only
/1 if either the place
/1 holder is allowed, or at |east one of
/1 the conponents
/1 out of the two is visible.
col ++;

}
}

/'l Store the cal cul ated nmax hei ght of the row

hei ght s[current Row] = hei ght;
/1 No nore conponents
if (currentConponent >= nConp) ({

br eak;
}
}
return retArray;
}
private Di nension cal cul ateLayout Si ze(fi nal Container target,
final int columSeparati ngWdth, final int

int nComp = target.get Conponent Count ();
/1 The nunber of actual

rows mght be less if there

/] are invisible conponents added to the container.

int nrOf Rows =
int[][] dins =
int[] promptWdths = dinms[0];

int[] fieldWdths = dins[1];

int[] heights = dins[2];

/1 Sumup the widths of the colums

(((nConp / 2) + nrf Col ums) -
cal cul at eDi nensi ons(target,

nConp,

nr Of Rows,

final
rowSepar at i ngHei ght) {

I nput Layout Type i nput Layout,

1) / nrOf Col umms;

i nput Layout) ;

/Il (the colums are separated by col umSeparati ngWdth pixels):

int w = columSeparati ngW dt h;

for (int i =0; i < nrOColums; i++) {
w += pronpt Wdths[i];
w += fieldWdths[i];
w += col utmSepar ati ngW dt h;
}
/1 If the nunber of rows is less than it was
/] cal cul ated, the unoccupied
/1 rows will have the height of 0 due to how
/1 Java initializes the arrays.
int h = rowSeparatingHei ght;
for (int i =0; i < nrOFRows; i++) {
h += heights[i];
h += rowSepar ati ngHei ght ;
}

/1 The insets values should be taken into account

Insets ins = target.getlnsets();
w += ins.left + ins.right;
h += ins.top + ins.bottom
return new Di mension(w, h);

* Calculates the mninumsize this container needs in

* order to lay out all
* Upon cal cul ati on,
* visible conponents will

of the components it contains.
only the space needed by the
taken into account.

I'f both

* element of a pronpt/input field pair are invisible,
* then depending on the current setting of the place

* hol ders, the next pair still

appears in its own

* colum, or replaces the invisible pair.

* @aramtarget

* The contai ner of which the m ni mum size
* shoul d be cal cul at ed.

* @eturns The dinmension mininally needed to |ay out
* the container.

* @ee #al |l owPl aceHol der s(bool ean)

* @ee java.awt . Layout Manager #ni ni runLayout Si ze(j ava. awt . Cont ai ner)
*/
@verride
public Di nensi on m ni nunLayout Si ze(final Container target) {
| nput Layout Type i nput Layout = | nputLayout Type. M Nl MUM
int columSeparati ngWdth = 0;
int rowSeparatingHei ght = 0;
return cal cul ateLayout Si ze(target, inputlLayout, columSeparatingWdth,

* Calculates the preferred size this container needs in
* order to lay out all of the conponents it contains.

* Upon cal culation, only the space needed by the

* visible conponents will taken into account. If both

* element of a pronpt/input field pair are invisible,

* then depending on the current setting of the place

* hol ders, the next pair still appears in its own

* colum, or replaces the invisible pair.

* @aramtarget

* The contai ner of which the preferred size
* shoul d be cal cul at ed.

* @eturns The dinmension preferably needed to |ay out
* the container.

* @ee #all owPl aceHol der s(bool ean)

* @ee java.aw . Layout Manager #pref erredLayout Si ze(j ava. awt . Cont ai ner)
*/
@verride
public Di nension preferredLayout Si ze(final Container target) {
I nput Layout Type i nput Layout = | nput Layout Type. PREFERRED;
/1 the colums are separated by 4 pixels:
int columSeparati ngWdth = 4;
/1 the rows are separated by 4 pixels:
int rowSeparatingHei ght = 4;
return cal cul ateLayout Si ze(target, inputlLayout, columSeparatingW dth,

* Cal cul ates the maxi num size this container needs in
* order to lay out all of the conponents it contains.
* Upon cal culation, only the space needed by the

* visible components will taken into account. If both
* element of a pronpt/input field pair are invisible,
* then depending on the current setting of the place

* holders, the next pair still appears in its own

* colum, or replaces the invisible pair.

* @aramtarget

* The contai ner of which the nmaxi mum si ze

* shoul d be cal cul at ed.

* @eturns The nmaxi mum di mensi on needed to lay out the
* cont ai ner.

* @ee #all owPl aceHol der s(bool ean)

* @ee java.awt . Layout Manager 2#maxi muniayout Si ze(j ava. awt . Cont ai ner)
*/
@verride
publ i c Di nensi on mexi nunLayout Si ze(final Container target) {
| nput Layout Type i nput Layout = | nput Layout Type. MAXI MUM
int columSeparati ngWdth = 0;
/1 the rows are separated by 4 pixels:
int rowSeparatingHei ght = 0;

rowSepar ati ngHei ght) ;

rowSepar at i ngHei ght) ;

return cal cul atelLayout Si ze(target, inputlLayout, colummSeparati ngWdth, rowSeparatingHei ght);

}

/**

* Layi ng out the conponents in the container.
*

* @ee java. aw . Layout Manager #l ayout Cont ai ner (j ava. awt . Cont ai ner)

*/

@verride

public void | ayout Container(final Container target) {
/1 Number of conponents
int nConp = target.get Conponent Count () ;
/1 The nunber of actual rows might be less if there
/] are invisible
/| components added to the container.

int nr0fRows = (((nConp / 2) + nrOf Colums) - 1) / nr O Col unms;

/1 The current size of the container

Di nension dim = target.getSize();

Insets insets = target.getlnsets();

/1 The space remaining for the components. Note that
/1 in case of

/] negative insets, the space is bigger

int currentWdth = dimwidth - (insets.left + insets.right);

/1 int currentHeight = dimheight - (insets.top + insets.botton);
if (needed == null) {
needed = preferredLayoutSi ze(target);
needed. set Si ze(needed. width - (insets.left + insets.right),
bottom);

}
if (currentWdth >= needed.w dth) {

int[][] dims = cal cul ateDi nensi ons(target, nConp, nrOf Rows,

doubl e extra = current Wdth - needed. wi dt h;
creat eActual Layout (target, extra, dins, 2);
} else {
if (badl yNeeded == null) {
badl yNeeded = m ni nunLayout Si ze(target);

needed. height - (insets.top + insets.

I nput Layout Type. PREFERRED) ;

badl yNeeded. set Si ze(badl yNeeded. width - (insets.left + insets.right), badl yNeeded. hei ght

- (insets.top + insets.bottom);

}

if (currentWdth >= badl yNeeded. wi dt h) {
int[][] dins = cal cul at eDi mensi ons(target, nConp,
doubl e extra = current Wdth - badl yNeeded. wi dt h;
creat eActual Layout (target, extra, dinms, 0);

} else {
/'l shrink
int[][] dins = cal cul at eDi nensi ons(target, nConp,
creat eActual Layout (target, 0.0d, dins, 0);

| **

* Distributes the extra space anpng the col ums.

*

* @aramtarget

* The contai ner which contains the

* conponents.

* @aramextra

* The extra space that shoul d be distributed.
* @aram di ms

* The array of int arrays which contains the
* al ready cal cul ated wi dth and hei ght

* infornmations. The first subarray is the

* wi dt hs of the pronpt subcolums, and the

* second one is the widths of the input

* field subcolums. The third subarray

* contains the heights of the rows.

* @aramins

* The gap between the subcolums. This gap

* shoul d be used before and after of each

* conmponent. The sane gap al so shoul d be

* used above and bel ow of each conponent.

nr Of Rows,

nr Of Rows,

I nput Layout Type. M NI MUM ;

I nput Layout Type. M NI MUM ;

private void createActual Layout (final Container target, final double extra,

ins) {

| **

int[] fieldWdths = dins[1];

int all = 0;
if (extra > 0) {
for (int i =0; i < nrOfColums; i++) {

int add = (int) ((extra * columWights[i]) / 100);
all += add;
fieldWwdths[i] += add;

}

if (all = extra) {
fieldWdths[nrOf Colums - 1] += extra - all;
}

| ayout Conponent s(target, dins, ins);

* Lays out the conmponents on the container. Sizing and

*

ocating the conponents is done fromleft to right,

* and fromtop to bottom

*

* @aramtarget

*

The cont ai ner which contains the
conponent s.

* @aram di ns

The array of int arrays which contains the
al ready cal cul ated wi dth and hei ght
informations. The first subarray is the
wi dt hs of the pronpt subcolumms, and the
second one is the widths of the input
field subcolums. The third subarray
contains the heights of the rows.

* @aramins

*

*% [

pr ot

The gap between the subcolums. This gap
shoul d be used before and after of each
conponent. The sane gap al so shoul d be
used above and bel ow of each conponent.

ected void | ayout Conponents(final Container target, final int[][]

int nConp = target.get Conponent Count () ;
int[] promptWdths = dins[0];

int[] fieldWdths = dins[1];

int[] heights = dins[2];

Insets insets = target.getlnsets();

int gap = ins + ins;

Component pronmpt = null;

Conponent field = null;

int currentConponent = 0;

di ns,

int top = insets.top + gap;

for (int currentRow = 0; currentRow < hei ghts. | ength; current Rowt+) {
int left = insets.left + ins;
for (int col = 0; col < nr&Colums;) {

int subcols = 0;
if (currentConmponent >= nConp) ({
/1 no nore conponents are avail able
br eak;
}
pronpt = target.get Conponent (current Conponent ++) ;
if ((pronpt !'= null) && pronpt.isVisible()) {
subcols | = 1;
}
if (currentComponent < nConp) {

field = target.get Conmponent (current Conponent ++) ;

if ((field !=null) & field.isVisible()) {
subcols | = 2;
}

}
if (isPlaceHolderAllowed || (subcols > 0)) {

switch (subcols) {
/1l Only the pronpt exists and/or is
/1 visible.

final

final

int[][(] dins,

int

ins) {

final

int

[curr

[curr

case 1: {

+ fieldWdths[col] + gap,

hei ght s[current Rowj) ;

top, fieldWdths[col],

pronpt . set Bounds(l eft, top, pronptWdths[col]
ent Rowj) ;
break;
}
/1 Both the pronpt and the input
/1 field exist and are visible.
case 3: {
pronpt . set Bounds(l eft, top, pronptWdths[col],
/] continues with the next case
}
/1] Only the input field exists
/1 and/or is visible.
case 2: {
field. setBounds(left + pronptWdths[col] + gap,
ent Rowj) ;
break;
}
}
left += pronptWdths[col] + gap;
left += fieldWdths[col] + ins;
col ++;
}
}
top += heights[currentRow + gap;
if (currentComponent >= nConp) {
br eak;
}
}

* Adds the conponent to the layout. This method is
* provided for conpatibility considerations, and

* del egates the call to the newer formof the

* over| oaded net hod.

* @ee #addLayout Conponent (j ava. awt . Conponent,

* java. |l ang. Obj ect)
**/
@verride

public voi d addLayout Conponent (fi nal

}
/

String nane,

t hi s. addLayout Conponent (conp, nane);

**

* Adds the conponent to the layout.
* invalidates the |ayout.

*

Thi s operation

* @ee java.awt . Layout Manager 2#addLayout Conponent (j ava. awt . Conponent ,

*% [

@verride

public void addLayout Conponent (fi nal

}
/

dol nval i date();

* %

* Renpves the conponent fromthe |ayout.
* invalidates the |ayout.

*

final

Conponent conp,

final

Thi s operation

Conponent conp) {

java. |l ang. Obj ect)

Obj ect constraints) {

* @ee java.awt.Layout Manager #r enovelLayout Conponent (j ava. awt . Conponent)

*/

@verride

public void renovelLayout Conponent (fi nal

}
/

dol nval i date();

* %

* Invalidates the infornation stored by the |ayout
* manager .

* the container.

Conponent conp) {

The only information currently cached is the
* di mension of the preferred and the nininum size of

* @ee java.awt . Layout Manager 2#i nval i dat eLayout (j ava. awt . Cont ai ner)

hei ght s

hei ght s

@verride
public void invalidatelLayout(final Container target) {
dol nval i date();
}
/**
* Performs the invalidate |ayout functionality. That
* is, deletes all of the cached informati on about the
* |ayout.
**/
private void dolnvalidate() {
needed = nul | ;
badl yNeeded = nul | ;
}
/**
* Provides alignnent information. This is a no-op.
*
* @ee java.aw . Layout Manager 2#get Layout Al i gnnent X(j ava. awt . Cont ai ner)
*/
@verride
public float getLayoutAlignnmentX(final Container target) {
return 0. O0f;
}
/**
* Provides alignnment information. This is a no-op.
* @ee java.awt.Layout Manager 2#get Layout Al i gnnment Y(j ava. awt . Cont ai ner)
*/
@verride
public float getLayoutAlignnmentY(final Container target) {
return 0. O0f;
}

	InputLayout

